The Force Fields of Cl_2O and Cl_2O_7

By B. BEAGLEY, A. H. CLARK, and D. W. J. CRUICKSHANK (Chemistry Department, University of Glasgow, Glasgow, W.2)

The results of normal-co-ordinate analyses by computer of the vibrational motions in Cl_2O and Cl_2O_7 show that certain aspects of earlier work reported in the literature require correction.

Rochkind and Pimentel¹ have derived the simple harmonic force field for Cl_2O by a comprehensive study of the infrared spectra of a number of isotopic species. Repetition of some of the calculations shows that in one aspect the reported force field is in error. The correct value of $f_{r,\theta}$, the bond-stretching-angle-bending interaction force constant, is twice the published value. The revised field agrees well with that obtained by Herberich, Jackson, and Millen² from a microwave study. The situation is summarised in Table 1. As a further check on the force field, an electrondiffraction study of gaseous Cl₂O is being carried out to determine the root-mean-square amplitudes of vibration for Cl-O and Cl · · · Cl. These amplitudes have been calculated from the revised force field and are $u_{\text{Cl-O}} = 0.051$ Å and $u_{\text{Cl}...\text{Cl}} =$ 0.067 Å at 0°c.

For Cl_2O_7 , a number of attempts³⁻⁵ have been made to assign the observed vibrational frequencies to the appropriate modes of vibration. For the bridging part of the molecule, these assignments are listed in Table 2. Normal-co-ordinate calculations, making use of vibrational amplitudes

Preliminary calculations were carried out treating Cl_2O_7 as a bent XOX system (X = ClO_3) and assuming a completely diagonal (valence) force field. Thus the three fundamental frequencies v_{s} , v_{b} , v_{a} , and two mean amplitudes u_{ox} and u_{xx} are dependent on the two parameters $f_{\mathbf{r}}$ and f_{θ} ($f_{\mathbf{rr}} = f_{\mathbf{r}\theta}$ = 0). The bond-stretching force constant, $f_{\mathbf{r}}$, was force-constant matrix in the XOX treatment and using a force-constant ellipse method. This method indicates all the possible harmonic force fields for a particular choice of v_s , v_b , v_a . Each of the previously published assignments²⁻⁵ was tested and could immediately be discarded because they lead to force fields with unreasonably large offdiagonal elements. The new assignment suggested by the simple diagonal-field approximation leads to

TABLE 1

Harmonic force field for Cl₂O

	Ref. 1	This work	Ref. 2	
$f_r (md/Å)$	2.75	2.75	2.88	
$f_{\rm rr} ({\rm md}/{\rm \AA})$	0.40	0.40	0.31	
$f_{r\theta} \times 10^3$ (dyne/rad)	0.13	0.26	0.28	
$f_{\theta} \times 10^{11} (\mathrm{erg/rad}^2)$	1.32	1.32	1.22	

TABLE 2

Frequency assignments for bridge in Cl_2O_7 (cm.⁻¹)

Mode	Ref. 3	Ref. 4	Ref. 5	This work
v_{a} , Antisymmetric	501	695	695	695
vb, Symmetric	or 595	280	$<\!280$	~195
CI=O(br)=CI angle bend v_8 , Symmetric CI=O(br) stretch		495	280	595

set equal to 2.75 md/Å, the value given in Table 1 for Cl-O in Cl₂O. This assumption is justified by the similarity in the experimental values for the lengths of the bridging bonds in Cl_2O and Cl_2O_7 (1.700 and 1.709 Å, respectively^{2,6}). It follows at once that $v_a = 695$ cm.⁻¹ in agreement with two of the earlier assignments.^{4,5} To find v_8 and v_b , f_{θ} was steadily increased from zero until the calculated value of u_{xx} agreed with experiment⁶ (u_{cl} ... cl = 0.055 Å) within the limits of error of the approximations involved. Best agreement occurs when f_{θ} has the value 1.45×10^{-11} erg/rad.², which by calculation suggests the assignment $\nu_{\rm S}=$ 595 cm $^{-1}$ and leads to $v_{\rm b} = 195$ cm.⁻¹

The doubtfulness of the earlier assignments²⁻⁵ can be further demonstrated by employing the full a force field closely similar to that obtained for Cl_2O and to values of u_{0x} and u_{xx} which agree satisfactorily with experiment.⁶

A full normal-co-ordinate analysis of Cl₂O₇, now in progress, confirms the value of 595 cm.-1 for v_8 . The band at 280 cm.⁻¹ which previous workers assign as v_b or v_s corresponds to a rocking mode of the ClO₃ groups.

The infrared spectrum⁴ at present available for Cl₂O₇ has a lower limit of about 250 cm.⁻¹ Information about the far-infrared or Raman spectrum of Cl₂O₇ should confirm the presence of the anglebending mode which is expected below 200 cm.⁻¹ There are also two torsional modes which should give bands near 100 cm.-1

(Received, June 10th, 1966; Com. 396.)

- ¹ M. M. Rochkind and G. C. Pimentel, J. Chem. Phys., 1965, 42, 1361.
 ² G. E. Herberich, R. H. Jackson, and D. J. Millen, J. Chem. Soc. (A), 1966, 336.
 ³ R. Fonteyne, Natuurw. Tijdschr. (Ghent), 1938, 20, 112, 275.
 ⁴ R. Savoie and P. A. Giguère, Canad. J. Chem., 1962, 40, 991.
 ⁵ R. J. Gillespie and E. A. Robinson, Canad. J. Chem., 1964, 42, 2496.

- ⁶ B. Beagley, Trans. Faraday Soc., 1965, 61, 1821.